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Abstract 

Background: APOE variants are strongly associated with abnormal amyloid aggregation and additional direct effects 
of APOE on tau aggregation are reported in animal and human cell models. The degree to which these effects are 
present in humans when individuals are clinically unimpaired (CU) but have abnormal amyloid (Aβ+) remains unclear.

Methods: We analyzed data from CU individuals in the Anti-Amyloid Treatment in Asymptomatic AD (A4) and 
Longitudinal Evaluation of Amyloid Risk and Neurodegeneration (LEARN) studies. Amyloid PET data were available 
for 4486 participants (3163 Aβ-, 1323 Aβ+) and tau PET data were available for a subset of 447 participants (55 Aβ-, 
392 Aβ+). Linear models examined APOE (number of e2 and e4 alleles) associations with global amyloid and regional 
tau burden in medial temporal lobe (entorhinal, amygdala) and early neocortical regions (inferior temporal, inferior 
parietal, precuneus). Consistency of APOE4 effects on regional tau were examined in 220 Aβ + CU and mild cognitive 
impairment (MCI) participants from the Alzheimer’s Disease Neuroimaging Initiative (ADNI).

Results: APOE2 and APOE4 were associated with lower and higher amyloid positivity rates, respectively. Among 
Aβ+ CU, e2 and e4 were associated with reduced (−12 centiloids per allele) and greater (+15 centiloids per allele) 
continuous amyloid burden, respectively. APOE2 was associated with reduced regional tau in all regions (-0.05 to -0.09 
SUVR per allele), whereas APOE4 was associated with greater regional tau (+0.02 to +0.07 SUVR per allele). APOE 
differences were confirmed by contrasting e3/e3 with e2/e3 and e3/e4. Mediation analyses among Aβ+ s showed that 
direct effects of e2 on regional tau were present in medial temporal lobe and early neocortical regions, beyond an 
indirect pathway mediated by continuous amyloid burden. For e4, direct effects on regional tau were only significant 
in medial temporal lobe. The magnitude of protective e2 effects on regional tau was consistent across brain regions, 
whereas detrimental e4 effects were greatest in medial temporal lobe. APOE4 patterns were confirmed in Aβ+ ADNI 
participants.

Conclusions: APOE influences early regional tau PET burden, above and beyond effects related to cross-sectional 
amyloid PET burden. Therapeutic strategies targeting underlying mechanisms related to APOE may modify tau accu-
mulation among Aβ+ individuals.
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Background
APOE4 is the strongest genetic predictor of sporadic 
Alzheimer’s disease (AD) dementia [1–4] and is consist-
ently associated with risk of abnormal amyloid during the 
stages preceding dementia onset [5–7]. APOE influences 
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amyloid accumulation through interactions with produc-
tion, fibrillization, and clearance mechanisms, as well as 
interactions between APOE, amyloid, tau, neuroinflam-
mation, and neuronal structure and function [8–10]. On 
average, APOE4 carriers typically reach the threshold 
for abnormal amyloid (Aβ+) approximately 10–15 years 
before e3/3 carriers, whereas amyloid positivity is delayed 
by approximately 4 years in e2 carriers compared to e3/e3 
carriers [11].

Tau abnormalities are a stronger predictor of concur-
rent cognitive ability and future cognitive impairment 
than Aβ status alone [12–14]. Although both amyloid and 
tau abnormalities are strongly related such that elevated 
tau is very uncommon among Aβ- individuals, there is 
substantial variability in the magnitude of tau PET uptake 
within Aβ+ individuals [12, 15–20], highlighting that 
additional factors beyond amyloid contribute to down-
stream tau accumulation. Interestingly, there is growing 
evidence suggesting that APOE may directly impact vari-
ability in tau accumulation. For instance, tau PET stud-
ies in Aβ+ patients across the AD clinical spectrum have 
shown a more medial temporal lobe (MTL)-dominant 
pattern of tau pathology in e4 carriers compared to non-
carriers [16, 21] even after adjusting for global amyloid 
burden [22, 23]. This suggests that APOE genotype may 
influence disease progression even after amyloid positiv-
ity is reached. This may also partially explain why in early 
clinical trials for AD dementia patients, which did not yet 
routinely assess amyloid status, e4 carriers declined more 
rapidly than non-e4 carriers [24].

However, analyses examining APOE effects on tau 
PET specifically among clinically unimpaired (CU) par-
ticipants have found mixed results. For instance, Lowe 
and colleagues [25] reported no effect of e4 on tau, and 
Ramanan and colleagues [26] found similar null effects 
after controlling for global levels of amyloid. In contrast, 
Ossenkoppele and colleagues [27] found a significant 
effect of e4 on entorhinal tau and Ghisays and colleagues 
[28] reported that e4 modified the association between 
age and entorhinal tau. Thus, the extent to which APOE4 
influences early regional tau burden in Aβ+ CU remains 
unclear [29]. Additionally, little has been established 
regarding whether APOE2 is associated with reduced 
tau burden in Aβ+ individuals. A primary barrier to 
examining e2 effects is that  e2 carriership is uncom-
mon in Aβ+ CU individuals. Within Aβ+ CU individuals, 
approximately 4–8% will be e2 carriers whereas around 
50% will be e4 carriers [29–31]. One study examining 
CU combined with mild cognitive impairment (MCI) 
showed comparable levels of regional tau burden and tau 
accumulation over time in 45 e2 carriers compared to 
257 e3/e3 carriers [32], though only 15 of the 45 e2 car-
riers were Aβ+. Post-mortem work examining the full 

disease spectrum from CU to AD dementia has shown 
mixed results, with one study of 411 e2 carriers showing 
no effect on Braak staging after controlling for neuritic 
amyloid plaque severity [33], and another study of 163 e2 
carriers showing fewer tau tangles in the Aβ+ e2 group 
compared to Aβ+ e2 non-carriers [34]. To date, it is likely 
that studies focused on CU cohorts have been underpow-
ered to determine whether e2 effects influence tau accu-
mulation among Aβ+ .

The overall goal of the present study was to establish 
whether APOE genotype influences early tau burden in 
preclinical AD beyond effects attributable to amyloid 
burden. We leveraged the Anti-Amyloid Treatment in 
Asymptomatic AD (A4) and Longitudinal Evaluation of 
Amyloid Risk and Neurodegeneration (LEARN) amyloid 
PET screening dataset of 4486 CU [30, 35] along with 
the tau PET substudy [29, 30] that included 392 Aβ+ CU 
individuals with tau PET. APOE4 effects were addition-
ally confirmed in 220 Aβ+ CU and MCI participants 
from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI). We hypothesized that APOE genotype would 
influence regional tau PET values in the MTL and that 
these effects would be present after controlling for con-
tinuous amyloid burden.

Methods
The A4 Study is a secondary prevention trial that focused 
on participants with preclinical AD (i.e., Aβ+ CU) 
[30]. The LEARN study is a companion to the A4 study 
focused on Aβ- individuals. After initial telephone 
and in-clinic screenings to determine study eligibil-
ity including cognitive status, 4486 participants under-
went amyloid PET scanning to allow for identification 
of Aβ+ individuals prior to treatment randomization. A 
subset enriched for  amyloid positivity  also underwent 
tau PET scanning prior to treatment randomization. All 
A4/LEARN participants completed written informed 
consent before participation. The ADNI is a public-
private partnership launched in 2003 with the primary 
goal of testing whether serial neuroimaging and biologi-
cal markers, and clinical and neuropsychological assess-
ments can be combined to measure the progression of 
MCI and early AD. All ADNI participants provided writ-
ten informed consent in compliance with local IRBs. For 
up-to-date information, see www. adni- info. org.

In the A4/LEARN dataset, all participants included in 
this study (Table 1 and Table S1) were 65–85 years old, 
CU (Clinical Dementia Rating score = 0, Mini-Mental 
State Examination score = 25–30, and Logical Memory 
Delayed Recall score = 6–18), and had completed amy-
loid PET scans ([18F]-florbetapir). A subset of these 
participants also completed tau PET scans ([18F]-
flortaucipir). Amyloid status was determined using a 

http://www.adni-info.org
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hybrid quantitative and qualitative method established 
by the A4/LEARN study team [30]. Global standard-
ized uptake value ratios (SUVRs) for amyloid PET (ref-
erence region: whole cerebellum) and regional SUVRs 
for tau PET (reference region: cerebellar gray) were 
extracted using previously published pipelines [29]. 
Briefly, amyloid and tau PET data were processed with 
in-house scripts using FSL, SPM, and FreeSurfer. Five-
minute amyloid and tau PET frames corresponding 
to 50–70 min and 90–110 min post-injection, respec-
tively, were realigned and summed. Each participant’s 
MRI data (including aparc+aseg FreeSurfer labels) 
were coregistered to the summed  PET data. Mean 
uptake values for each aparc+aseg FreeSurfer region 
were extracted. Cortical amyloid SUVR was calculated 
following ADNI procedures (see “Florbetapir (AV45) 
processing methods” from http:// adni. loni. usc. edu) 
and regional tau analyses focused on entorhinal, amyg-
dala, inferior temporal, inferior parietal, and precuneus 
regions as defined by FreeSurfer.

In the ADNI dataset, only participants with a tau PET 
scan ([18F]-flortaucipir), an amyloid positive PET scan 
([18F]-florbetaben  (FBB) or [18F]-florbetapir  (FBP)), 
available APOE status, and a diagnosis of CU or 
MCI within 1 year of the tau PET scan were included 
(Table 2). Amyloid PET SUVRs and cutoffs for amyloid 
status (reference region: whole cerebellum) as well as 
regional tau PET (reference region: inferior cerebellum) 
were downloaded from the ADNI LONI website.

For both A4/LEARN and ADNI amyloid data, amy-
loid SUVRs were converted to the common Centiloid 
(CL) scale using previously published equations [36] 
(Fig. S1). This conversion allows for direct comparison 

of data collected from different tracers and from differ-
ent studies. ADNI analyses combined [18F]-florbetaben 
and [18F]-florbetapir ligands using CL values.

Statistical analysis
Data were analyzed using R v4.1.2. Analyses primarily 
focused on the A4/LEARN dataset given the substantially 
larger sample of Aβ+ CU individuals with tau PET. First, 
to examine the association between APOE and amyloid 
burden, logistic regression models using the questionr 
package to obtain odds ratios examined the effects of e2 
and e4 dosage on dichotomous amyloid status (e.g., e3/
e3 carriers were coded with an e2 dosage of 0 and an e4 
dosage of 0; e3/e4 carriers were coded with an e2 dosage 
of 0 and an e4 dosage of 1; e2/e4 carriers were coded with 
an e2 dosage of 1 and an e4 dosage of 1). Within Aβ+s, 
linear regression models also examined the effects of 
e2 and e4 dosage on continuous amyloid burden. Mod-
els were repeated to include age*APOE interactions and 
sex*APOE interactions. Second, across Aβ-s and Aβ+s, 
linear regression models examined the effects of con-
tinuous amyloid on regional tau. Third, linear regres-
sion models examined the effects of e2 and e4 dosage on 
regional tau within Aβ+s only. Primary analyses included 
all genotypes. Additionally, we conducted a series of 
sensitivity analyses to ensure that the APOE effects on 
regional tau were not primarily driven by the presence 
of uncommon genotypes or our allele dosage modeling 
approach: (1) linear regression models with e2 and e4 
dosage were repeated after excluding e2/e2 and e4/e4 
homozygotes, (2) linear regression models with e2 and e4 
dosage were repeated after excluding e2/e4 carriers, (3) 
instead of modeling e2 and e4 dosage, linear regression 

Table 1 Demographic information for the A4/LEARN dataset

Full Dataset Tau Subset

Aβ- (n = 3163) Aβ+ (n = 1323) Aβ- (n = 55) Aβ+ (n = 392)

Age, mean (SD) 71.0 (4.5) 72.1 (4.9) 69.7 (4.3) 72.1 (4.8)

Sex, n (%)

 Male 1278 (40%) 545 (41%) 23 (42%) 167 (43%)

 Female 1885 (60%) 778 (59%) 32 (58%) 225 (57%)

APOE genotype, n (%)

 e2/e2 23 (1%) 2 (0%) 0 (0%) 1 (0%)

 e2/e3 380 (12%) 69 (5%) 4 (7%) 17 (4%)

 e2/e4 74 (2%) 42 (3%) 1 (2%) 13 (3%)

 e3/e3 1936 (61%) 481 (36%) 37 (67%) 147 (38%)

 e3/e4 684 (22%) 611 (46%) 13 (24%) 182 (46%)

 e4/e4 34 (1%) 105 (8%) 0 (0%) 25 (6%)

 Missing 32 (1%) 13 (1%) 0 (0%) 7 (2%)

Amyloid Centiloid, mean (SD) – – 4.0 (9.9) 54.8 (30.3)

http://adni.loni.usc.edu
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models contrasted common APOE genotype groups (e2/
e3 vs. e3/e3, e3/e4 vs. e3/e3). Finally, mediation models 
using the lavaan package examined whether continu-
ous amyloid mediated the association between APOE 
dosage and regional tau in Aβ+s. Bootstrapping proce-
dures (n = 10,000) were used to determine significance of 
effects in mediation models as well as to compare e2 and 
e4 effect sizes. All models controlled for mean centered 
age (71.3 years) and sex.

Analyses were repeated in Aβ+ CU and MCI partici-
pants from ADNI. Given the small number of Aβ+ e2 
individuals in ADNI (n = 7 CU and n = 6 MCI), ADNI 
was only used to examine effects of e4. Mediation models 

examining whether continuous amyloid mediated the 
association between e4 dosage and regional tau were 
repeated in 220 Aβ+ CU and MCI participants. These 
models also controlled for mean centered age (75.9 years) 
and sex.

Results
APOE predicts amyloid status
APOE genotype was significantly related to amyloid sta-
tus after accounting for age and sex. As expected, e2 dos-
age was associated with amyloid negativity and e4 dosage 
was associated with amyloid positivity (Table  3A). The 

Table 2 Demographic information for the ADNI dataset

FBP (Aβ+ n = 109) FBB (Aβ+ n = 111) Overall (Aβ+ n = 220)

Age, mean (SD) 78.8 (7.3) 73.1 (7.2) 75.9 (7.8)

Sex, n (%)

 Male 54 (50%) 55 (50%) 109 (50%)

 Female 55 (50%) 56 (50%) 111 (50%)

Diagnosis, n (%)

 CU 45 (41%) 49 (44%) 94 (43%)

 MCI due to AD 57 (52%) 59 (53%) 116 (53%)

 MCI due to Other 7 (6%) 3 (3%) 10 (5%)

APOE genotype, n (%)

 e2/e2 0 (0%) 0 (0%) 0 (0%)

 e2/e3 8 (7%) 1 (1%) 9 (4%)

 e2/e4 3 (3%) 1 (1%) 4 (2%)

 e3/e3 39 (36%) 35 (32%) 74 (34%)

 e3/e4 46 (42%) 58 (52%) 104 (47%)

 e4/e4 13 (12%) 16 (14%) 29 (13%)

Amyloid Centiloid, mean (SD) 59.4 (30.5) 69.2 (35.3) 64.3 (33.3)

Years between tau and amyloid PET scans, 
mean (SD)

−2.3 (1.9) 0.0 (0.2) −1.2 (1.8)

Table 3 APOE associations with (A) amyloid status and (B) continuous amyloid burden (centiloids) among Aβ+ clinically unimpaired 
(CU) individuals. Each column represents a separate regression model. Odds ratios (OR) and their 95% confidence intervals (CI) are 
provided in (A) and unstandardized betas and their standard errors (SE) are listed in (B)

A. Predicting amyloid status in 3163 Aβ- and 1323 Aβ+ CUs B. Predicting continuous amyloid burden in 392 Aβ+ CUs

OR (95% CI), p-value OR (95% CI), p-value B (SE), p-value B (SE), p-value

APOE2 0.658 (0.526–0.817), p < 0.001 0.935 (0.674–1.279), p = 0.679 −11.815 (4.993), p = 0.019 −17.310 (7.499), p = 0.022

APOE4 3.909 (3.445–4.444), p < 0.001 4.213 (3.459–5.151), p < 0.001 15.321 (2.401), p < 0.001 16.411 (3.948), p < 0.001

Age (Years) 1.080 (1.064–1.097), p < 0.001 1.092 (1.071–1.114), p < 0.001 1.817 (0.302), p < 0.001 1.456 (0.434), p < 0.001

Sex (F vs. M) 1.066 (0.925–1.229), p = 0.379 1.198 (0.981–1.466), p = 0.078 2.638 (2.922), p = 0.367 3.317 (4.354), p = 0.447

APOE2 * Age – 0.946 (0.905–0.989), p = 0.014 – 0.565 (1.021), p = 0.580

APOE4 * Age – 0.991 (0.964–1.019), p = 0.515 – 0.534 (0.526), p = 0.310

APOE2 * Sex (F vs. M) – 0.586 (0.377–0.911), p = 0.018 – 9.448 (10.325), p = 0.361

APOE4 * Sex (F vs. M) – 0.894 (0.692–1.153), p = 0.389 – −2.021 (4.983), p = 0.685
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impact of age on amyloid positivity was reduced in e2 
carriers and the protective effects of e2 on amyloid posi-
tivity was not observed in males (Table 3A and Fig. 1).

Global amyloid burden associations with regional tau
Among Aβ+s with tau PET data, APOE genotype was 
significantly associated with continuous amyloid bur-
den but interactions with age and sex were not signifi-
cant (Table 3B). Higher continuous amyloid burden was 
associated with greater regional tau levels across all MTL 
and early neocortical tau regions (Fig.  2  and Table S2). 
In general, Aβ- CU individuals showed little evidence of 
tau elevations. Although the Aβ+ group showed elevated 
regional tau SUVRs, a wide range was present, with some 
Aβ+ individuals showing evidence of tau elevations 
and others showing levels comparable to the Aβ- group 
(Fig.  2). Overall, among the Aβ+ group, age, sex, and 

continuous amyloid burden explained 7–15% of the total 
variance of regional tau (Table S2).

APOE associations with regional tau
Given the minimal levels of tau in Aβ-s combined with 
the small sample size of this group (n = 55), we next 
examined the influence of APOE on regional tau in 
Aβ+s only (n = 392). APOE e2 and e4 were significantly 
associated with reduced and increased tau, respectively, 
in MTL and early neocortical regions (Table 4). APOE2 
effects on reduced tau in amygdala and precuneus were 
strongest at older ages (Table S3). Results were similar 
after excluding the single e2/e2 Aβ+ participant and 
the 25 e4/e4 Aβ+ homozygotes (Table S4) as well as 
after excluding 13 e2/e4 Aβ+ carriers (Table S5).
APOE differences among Aβ+ s were further con-

firmed by directly contrasting e2/3 (n = 17) and e3/4 

Fig. 1 APOE interactions with age and sex.  The top row shows associations between age and probability of Aβ+ status as a function of APOE 
carriership. The top left panel depicts reduced effects of age on Aβ+ status in e2 carriers. The top right panel shows increasing associations 
between age and Aβ+ status across all levels of e4 carriership.  The bottom row shows associations between sex and probability of Aβ+ status 
as a function of APOE carriership. The bottom left panel depicts protective effects of e2 in females. The bottom right panel shows no significant 
difference between sexes in probability of Aβ+ status across all levels of e4 carriership
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(n = 182) against the e3/3 group (n = 147). APOE e2/e3 
individuals had significantly lower tau SUVRs than e3/
e3 individuals in entorhinal cortex, amygdala, inferior 
temporal, and precuneus (0.05–0.09 SUVRs), whereas 

e3/e4 individuals had significantly higher tau SUVRs 
than e3/e3 individuals in all examined MTL and  
early neocortical regions (0.03–0.08 SUVRs; Fig. 3 and 
Table S6).

Fig. 2 Association between amyloid and tau burden in (A) Aβ- and Aβ+ participants and in (B) only Aβ+ participants. Plotted tau SUVRs and 
amyloid centiloids (CLs) are residualized by age and sex

Table 4 APOE associations with regional tau SUVRs in 392 Aβ+s after controlling for age and sex. Each column represents a separate 
regression model. Unstandardized betas (SE) and p-values are listed

Entorhinal Amygdala Inferior Temporal Inferior Parietal Precuneus

APOE2 −0.088 
(0.028), p = 0.002

−0.084 
(0.028), p = 0.003

−0.055 
(0.023), p = 0.017

−0.045 
(0.022), p = 0.037

−0.056 
(0.017), p = 0.001

APOE4 0.056 (0.013), p < 0.001 0.073 (0.013), p < 0.001 0.034 (0.011), p = 0.002 0.032 (0.010), p = 0.002 0.019 (0.008), p = 0.023
Age 0.004 (0.002), p = 0.034 0.006 (0.002), p = 0.001 0.003 (0.001), p = 0.047 −0.001 (0.001), p = 0.318 0.000 (0.001), p = 0.682

Sex (F vs. M) 0.032 (0.016), p = 0.052 0.000 (0.016), p = 0.998 0.017 (0.013), p = 0.211 0.042 (0.013), p = 0.001 0.006 (0.010), p = 0.564
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Direct effects of APOE on regional tau in Aβ+ CU
Because APOE genotype remains a significant predic-
tor variable of continuous amyloid burden even within 
Aβ+ s (Fig.  2  and Table S2), we conducted a series of 
mediation models to determine whether global amy-
loid burden mediates the association between APOE 
and regional tau in Aβ+ CU individuals (Fig.  4A; Fig. 
S2A). Continuous amyloid burden accounted for 
14–27% of the effect of e2 on regional tau and 21–68% 
of the effect of e4 on regional tau. For e2, partial 
mediation was found in both MTL and early neocor-
tical regions with significant direct effects remaining 
between e2 and regional tau across all regions. In con-
trast, partial mediation effects were found for e4 in 
MTL regions only; direct effects of e4 on tau in early 
neocortical regions were not significant.

The e2 and e4 effect sizes were compared within 
and across tau regions using bootstrapping proce-
dures (Fig. 4A). The direct effect of e4 on regional tau 
SUVRs was significantly stronger in the amygdala in 
comparison to neocortical regions. The strength of 
direct effects of e2 in MTL were qualitatively larger 
but not significantly different than those observed in 
neocortical regions, with the exception of stronger e2 
effects in amygdala than inferior parietal tau. Within 
each tau region, e2 direct effects were qualitatively 

stronger than e4 direct effects, though these differ-
ences were not significant except in precuneus.

Amyloid mediates the association between APOE4 and tau 
in Aβ+ CU and MCI
Mediation analyses examining effects of e4 were con-
ducted in 220 Aβ+ CU and MCI individuals from ADNI 
(Fig.  4B). APOE2 effects were not examined given the 
small sample size of only 13 Aβ+ e2 carriers (9 e2/
e3 and 4 e2/e4) in this dataset. This analysis showed 
that e4 effects on regional tau were 2–3 times larger 
than e4 effects from the A4/LEARN analyses, presum-
ably because the ADNI cohort included Aβ+ MCI 
and therefore a broader range of regional tau values. 
Among Aβ+ CU and MCI, continuous amyloid burden 
accounted for 40–51% of the variance of the effect of e4 
on MTL tau and both indirect and direct effects were sig-
nificant. In neocortical regions, continuous amyloid bur-
den fully accounted for the variance of the effect of e4, 
and only indirect pathways through continuous amyloid 
were significant (i.e., no significant direct effect of e4 on 
neocortical tau remained). Thus, e4 effects on regional 
tau were consistent across A4/LEARN and ADNI analy-
ses, with both cohorts showing significant direct effects 
between e4 and MTL tau PET, and no significant direct 
effects of e4 on neocortical regions after accounting for 

Fig. 3 Regional tau differences between Aβ+ APOE e2/e3, e3/e3, and e3/e4 groups. Plotted tau SUVRs are residualized by age and sex. Note: * 
p < 0.05, **p < 0.01, ***p < 0.001
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Fig. 4 Mediating effects of amyloid (centiloids) on APOE and regional tau SUVRs. (A) Stacked bar plots depict the total effect, as well as indirect 
and direct subcomponents, extracted from mediation models examining the effects of APOE on regional tau among Aβ+ clinically unimpaired 
(CU) individuals from A4. A comparison of e2 and e4 direct effect sizes are also shown. Error bars reflect standard error. (B) Stacked bar plots depict 
the total effect, as well as indirect and direct subcomponents, extracted from mediation models examining the effects of APOE e4 on regional tau 
among Aβ+ CU and mild cognitive impairment (MCI) individuals from ADNI. Note: * p < 0.05, **p < 0.01, ***p < 0.001
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continuous amyloid PET burden. All effects were similar 
when only including the 162 participants who had tau 
PET and amyloid PET scans within 2 years of each other 
(Fig. S3).

Discussion
In a large cohort of Aβ+ CU from the A4/LEARN study, 
we found that APOE genotype is associated with both 
global amyloid PET burden as well as regional tau PET in 
MTL and early neocortical regions. Cross-sectional exami-
nations of APOE, amyloid, and tau demonstrated both 
amyloid-mediated and direct effects of e2 and e4 on tau 
within the MTL. For tau in early neocortical regions, both 
amyloid-mediated and direct effects were present for e2 
whereas only amyloid-mediated effects were present for e4. 
Our findings provide evidence that APOE genotype influ-
ences early tau burden in preclinical AD beyond effects that 
are attributable to amyloid burden as measured with PET. 
This work highlights that although amyloid positivity is a 
key driver of downstream tau accumulation, APOE geno-
type additionally influences disease progression through 
mechanisms directly related to tau accumulation.
APOE4 is involved in amyloid production, formation 

of amyloid plaques and APOE/amyloid complexes, cel-
lular clearance of amyloid, amyloid clearance through 
the blood-brain barrier, and proteolytic degradation [8, 
9, 37]. Given the numerous mechanisms of e4 influenc-
ing amyloid, it is no surprise that amyloid PET studies 
consistently demonstrate that e4 is associated with an 
earlier onset of amyloid accumulation [38] as well as 
increased amyloid deposition rate and burden [6, 7, 39, 
40]. Our results are consistent with these studies as we 
show that e4 dosage is associated with increased risk of 
amyloid positivity as well as continuous amyloid bur-
den even after amyloid positivity is reached. Specifically, 
each e4 and e2 allele was associated with +15 and −12 
centiloids, respectively, in Aβ+ CU. Given these effects, 
it is critical to account for continuous amyloid burden 
in analyses examining the impact of APOE on regional 
tau burden [41–44].

Our finding that the effects of e4 on amyloid burden 
are greater than the protective effects of e2 for amyloid 
positivity is consistent with mechanistic work that shows 
more pathways linking e4 to amyloid processing than e2 
[9, 37]. For instance, whereas both e4 and e2 have been 
associated with amyloid plaques and amyloid clearance 
[45], e4 may additionally affect extracellular APOE/amy-
loid complexes [46], cellular clearance of amyloid [47, 48], 
and proteolytic degradation of monomeric amyloid [49]. 
Overall, our analyses of the full A4/LEARN screening 
dataset of 4486 CU confirmed the expected effects of e4 
and e2 on both overall amyloid positivity and continuous 
amyloid burden within the Aβ+ CU group.

Our main finding was that both e4 and e2 influence 
early regional tau levels among Aβ+ individuals. Across 
two datasets (i.e., 392 Aβ+ CU from A4/LEARN; 220 
Aβ+ CU and MCI from ADNI), we showed that e4 was 
associated with higher MTL tau PET burden, an effect 
that was only partially mediated by continuous amyloid 
burden. Interestingly, the overall pattern of significant 
direct effects of e4 on MTL accounting for ~50% of the 
total effect was consistent between Aβ+ CU data from 
A4/LEARN and combined Aβ+ CU and MCI data from 
ADNI. One difference between the A4/LEARN and 
ADNI results was that the overall magnitude of the total 
e4 effect on regional tau in MTL and neocortical regions 
was 2–3 times stronger in ADNI (increase of 0.039–
0.152 SUVR per allele) than A4/LEARN (increase in 
0.019–0.073 SUVR per allele). The stronger total effects 
in ADNI can be explained by the inclusion of Aβ+ MCI 
in the ADNI analyses, who are known to have a greater 
range of tau PET values than Aβ+ CU [27, 50]. Despite 
differing magnitudes, the fact that the proportion of e4 
direct and indirect effects remained consistent in both 
cohorts provides further support for an association 
between e4 on tau during the pre-dementia stages of dis-
ease. Potential mechanisms may involve mislocalization 
of tau from the axon to the soma and dendrites, promo-
tion of aberrant hyperphosphorylation, acceleration of 
spread from diseased to healthy neurons, enhancement 
of aggregation of p-tau into insoluble neurofibrillary tan-
gles, and disruption of tau clearance due to e4 [9, 51].

In addition to e4 effects on regional tau, we also found 
that e2 was associated with reduced tau levels in both 
MTL and neocortical regions. More than 75% of the total 
effect of e2 on tau in MTL and cortex was direct (i.e., not 
accounted for by continuous amyloid burden). Our find-
ings are consistent with animal models and iPSC-derived 
human brain cell cultures that have identified direct asso-
ciations between APOE and tau accumulation [51–55]. 
APOE2 in particular may be protective against AD par-
tially through lipid and metabolic mechanisms that lead 
to fewer tau tangles [44]. It is likely that other non-amy-
loid factors have a similar impact on disease progression, 
accelerating progression in some Aβ+ individuals but 
allowing for resilience to downstream changes in other 
Aβ+ individuals [56]. Given the link between elevated 
tau burden and risk of clinical progression from CU to 
MCI [14], the identification of factors that influence tau 
burden among Aβ+s will improve individual level predic-
tion and shed insight into mechanisms of disease risk and 
resilience.

Our results also show that e4 and e2 differ in their 
impact on tau spatial patterns. Specifically, e4 was only 
linked to regional effects within the MTL whereas the 
effect of e2 was consistent across MTL and neocortical 
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regions. Our findings linking e4 specifically to MTL tau 
is consistent with several studies combining participants 
across the AD clinical  spectrum [16, 21–23]. Matts-
son and colleagues [21] reported that in AD dementia 
patients, e4 carriers were similar to non-carriers in the 
magnitude of regional tau, but e4 carriers had greater 
entorhinal cortex uptake relative to neocortical uptake 
quantified using a ratio. APOE4 is known to lead to 
blood-brain barrier dysfunction [57–60] and regional 
susceptibility to blood-brain barrier breakdown [61] may 
explain the MTL dominant pattern of tau in e4 carri-
ers. While blood-brain barrier dysfunction contributes 
to cognitive decline independent of AD pathology [62], 
there are also inflammatory and immune-related path-
ways linking e4 to Aβ and tau [63, 64]. Recent human 
work linking blood-brain barrier dysfunction to APOE4 
status showed selective blood-brain barrier dysfunction 
in the MTL [62], suggesting that the MTL in particular 
may have increased susceptibility to e4-related blood-
brain barrier breakdown in aging. Our results extend 
these findings to provide further support for a selec-
tive effect of e4 on the MTL and suggest that this effect 
emerges during the preclinical stage of AD.

In A4/LEARN, we found that e2 was associated with 
a global reduction in tau burden across the MTL as well 
as all three neocortical regions. Given this more global 
pattern, it may be fruitful for future studies to explore 
e2 associations with cerebrospinal fluid or plasma bio-
markers. To our knowledge, this is the first study to 
show a global effect of e2 on regional tau levels in pre-
clinical AD. In vivo PET imaging and postmortem find-
ings have provided evidence for regional variation in tau 
pathology that was associated with factors aside from 
amyloid such as differing levels of APOE expression, 
Related Orphan Receptor B positive neurons, homeo-
static astrocytes, and inflammatory microglia function 
[65]. Although our effects are predominantly independ-
ent of continuous amyloid burden as measured by PET, 
the e2 effect we observed may still be mediated by amy-
loid-related processes. Given that e2 has been associated 
with slower longitudinal amyloid accumulation over time 
[6], it is possible that slower rates of accumulation are 
also associated with less downstream tau accumulation. 
For instance, a slower rate of abnormal amyloid deposi-
tion may afford greater opportunities for compensatory 
mechanisms and/or a more effective response to neu-
ronal injury.

A recent case report highlighted a PSEN1-E280A indi-
vidual with two copies of the Apoe Christchurch muta-
tion, low to intermediate levels of tau burden, extremely 
high levels of amyloid, and preserved cognition for 
nearly 30 years beyond the typical age of AD symptoms 

for the PSEN1-E280A kindred [65]. Although the Apoe 
Christchurch mutation is only a candidate protective var-
iant in this case, this mutation is thought to act through 
similar mechanisms to e2. Both the Apoe Christchurch 
mutation and e2 homozygosity are associated with Type 
III hyperlipoproteinemia [66] and lipid metabolism could 
potentially be an APOE-related protective mechanisms 
against significant tau accumulation. Overall, e2 seems to 
exert additional protection against AD dementia risk via 
pathways directly related to tau accumulation, although 
future work is needed to identify exact underlying 
mechanisms.

Although we showed that both e4 and e2 influence 
regional tau levels, differences in the overall pattern 
of these findings highlight that underlying mechanis-
tic pathways may differ across APOE genotypes. While 
e2, e3, and e4 show a stepwise association with risk of 
clinical AD dementia as well as overall amyloid plaque 
burden [33, 48, 67], the impact of e2 on Aβ-related and 
Aβ-independent mechanisms of AD are less estab-
lished than e4 effects [37]. This lack of understanding 
may be because e2 is less common than e4 in the gen-
eral population. The expected frequency of e2 and e4 is 
approximately 8 and 13%, respectively, in individuals with 
European ancestry [68, 69], but e2 is especially under-
represented among Aβ+ CU (4–8% [29–31]) and AD 
dementia patients (approximately 11% [70]). Importantly, 
the rarity of e2 carriers among Aβ+ individuals limits the 
ability to evaluate e2-related mechanisms that influence 
disease progression above and beyond amyloid abnor-
malities in humans, such as downstream tau accumula-
tion. This was evident in our analyses with ADNI, where 
the presence of only 13 e2 Aβ+ individuals precluded 
analysis (however, see previous work in ADNI that found 
no effect between e2 and tau PET when examining e2 
effects in a combined group of Aβ- and Aβ+ CU and 
MCI [32]). The large sample size of the A4/LEARN CU 
dataset provided the opportunity to evaluate 31 Aβ+ e2 
carriers that also have tau PET (1 e2/e2, 17 e2/e3, 13 e2/
e4), which is still a small sample but nevertheless is larger 
than previous work. Given limited sample sizes for each 
e2 genotype, our general approach was to model e2 allele 
count, and additionally confirm results by directly con-
trasting e2/e3 and e3/e3 groups in sensitivity analyses. 
Future work that combines data across cohorts may pro-
vide one strategy to validate our A4/LEARN e2 findings 
and further characterize the impact of e2 on non-amyloid 
pathways.

There are several limitations to consider. First, only 
cross-sectional amyloid and cross-sectional tau data were 
examined. Because APOE genotype has been shown to 
influence rates of amyloid accumulation over time [6], it 
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is possible that differences in tau burden relate to amy-
loid rate rather than APOE genotype. Similarly, it has 
been suggested that tau pathology begins to accelerate, 
particularly in neocortex, at some point after an individ-
ual becomes amyloid positive [15, 71]. Because APOE4 
and APOE2 carriers tend to become amyloid positive at 
earlier and later ages, respectively, compared to APOE3 
carriers [2, 72],  it is possible that e2 carriers have been 
amyloid  positive for a shorter period of time and that 
reduced tau reflects this shorter period rather than a 
direct effect on tau. Longitudinal data and/or modeling 
of amyloid duration [73–76] will be helpful for under-
standing the contribution of amyloid rate and duration. 
Second, although this is the largest cohort of preclinical 
AD participants to date, the limited number of Aβ+ e2 
carriers that underwent tau PET reduces the power and 
reliability of our findings. This may be especially true 
for examinations of hypothesized age and sex interac-
tions, which requires further subgrouping within the 
sample of 31 Aβ+ CU e2 carriers. However, autopsy and 
cohort studies have shown that e2 carriers are less likely 
to ever be Aβ+. Third, amyloid PET is unable to distin-
guish between amyloid plaques relevant to AD and amy-
loid buildup in arteries indicative of cerebral amyloid 
angiopathy (CAA), and there are known APOE geno-
type differences in CAA [77, 78]. Thus, if amyloid PET is 
capturing CAA-relevant amyloid in the A4/LEARN and 
ADNI samples, our analyses may not accurately capture 
the magnitude of amyloid-mediated effects of APOE 
on tau. Relatedly, amyloid PET tracers bind to amyloid 
plaques whereas [18F]-flortaucipir binds to neuropil 
threads, ghost tangles, and neuritic plaques [79]. There 
may be additional links between APOE and other types 
of amyloid and tau deposits, such as oligomers, that are 
not captured by PET and thus not assessed in this study. 
Finally, because we only examined Aβ+ individuals, we 
are unable to determine whether direct APOE effects on 
tau only emerge after amyloid positivity has been reached 
or whether the same direct APOE effects on tau would 
be present in the absence of amyloid. Although elevated 
tau PET values are sparse among Aβ- individuals, these 
elevations have been associated with reduced cognitive 
performance and greater atrophy [80]. Thus, it is possi-
ble that APOE exerts effects even among Aβ- individu-
als, warranting future larger studies that can determine 
whether effects of APOE on tau pathology are dependent 
on the presence of abnormal amyloid.

Conclusions
Our results suggest that APOE genotype influences 
regional tau PET burden in the early stages of AD patho-
logical accumulation. E4 was specifically associated with 
elevations in the MTL, whereas protective e2 effects were 

present in the MTL and neocortex. Given our findings 
for both amyloid-mediated and direct effects of APOE 
on tau, gene therapies [81–83] that leverage protective 
e2 mechanisms may have a global protective impact on 
limiting amyloid and tau across the brain. Our results 
also suggest that targeting amyloid removal in e4 carri-
ers at the preclinical stage may not be enough for impact-
ing downstream tau accumulation given that amyloid 
burden only explained 22–39% of the total effect of e4 
on regional tau in the MTL. APOE effects on tau accu-
mulation in Aβ+ CU highlight that across individuals, 
there are variable rates of progression throughout the 
AD cascade, as opposed to a uniform canonical pathway 
that follows from amyloid  positivity. Treatments may 
need to target different mechanisms depending on dis-
ease stage, and these treatments may vary as a function 
of APOE genotype. For example, whereas anti-amyloid 
treatments may be effective among e3 and e2 Aβ+ indi-
viduals, e4 carriers may only benefit from anti-amyloid 
treatments before amyloid positivity is reached (and may 
require combination therapies targeting both amyloid 
and tau after amyloid  positivity). Understanding APOE 
mechanisms on tau may inform the development of anti-
tau treatments and more broadly, therapeutic strategies 
targeting underlying mechanisms related to APOE may 
be effective in preventing amyloid-mediated and direct 
effects of APOE on tau accumulation.
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